
Übungsaufgabe:

A3) Ein Oszillogramm dreier Wechselspannungen $u_1(t)$, $u_2(t)$ und $u_3(t)$ sei in der folgenden Abbildung vorgegeben. Die Spannung $u_1(t)$ eilt der Spannung $u_2(t)$ und diese $u_3(t)$ voraus.

$$t := 0 \cdot ms, 0.1 \cdot ms ... 30 \cdot ms$$
 $f := 50 \cdot Hz$ $\omega := 2 \cdot \pi \cdot f$

1 Div = 2ms 1 Div = 5V

- a) Berechnen Sie die Gesamtspannung mit Hilfe der komplexen Zahlendarstellung!
- b) Welche Phasenverschiebung weist die Gesamtspannung bezogen auf u2(t) auf?
- c) Welche Zuordungsvorschrift hat die Gesamtspannung?
- d) Zeichnen Sie das zugehörige Zeigerbild!

Lösung zu A3:

a)

$$\underline{U}_1 := 15 \!\cdot\! V \!\cdot\! e^{j \cdot 36 \cdot Grad}$$

$$\underline{U}_2 := 10 \cdot V \cdot e^{-(j \cdot 36 \cdot Grad)}$$

$$\underline{\mathbf{U}}_3 := 12.5 \cdot \mathbf{V} \cdot \mathbf{e}^{-(\mathbf{j} \cdot 108 \cdot \text{Grad})}$$

$$\underline{\mathbf{U}}_{\mathrm{ges}} := \underline{\mathbf{U}}_1 + \underline{\mathbf{U}}_2 + \underline{\mathbf{U}}_3$$

$$\underline{\mathbf{U}}_{\text{ges}} = 16.363 - 8.949 \mathrm{j} \, \mathrm{V}$$

$$\left|\underline{\mathbf{U}}_{\mathrm{ges}}\right| = 18.65\,\mathrm{V}$$

$$arg(\underline{U}_{ges}) = -28.676 \,Grad$$

$$U_{gesEff} := \frac{\left| \underline{U}_{ges} \right|}{\sqrt{2}}$$

 $U_{gesEff} = 13.188 V$

b)
$$arg(\underline{U}_{ges}) = -28.676 \,Grad$$
 = Winkel bezogen auf Re-

Achse

= Zeigerlänge von Uges

= Winkel bezogen auf Re-

Achse

$$arg(\underline{U}_2) = -36 Grad$$

$$\phi_{2ges} \coloneqq arg\big(U_2\big) - arg\big(U_{ges}\big) \quad \text{=Differenz der beiden Winkel}$$

$$\varphi_{2ges} = -7.324 \, Grad$$

Die Gesamtspannung $\mathbf{U}_{\mathrm{ges}}$ eilt der Spannung \mathbf{U}_2 um diesen Winkel voraus.

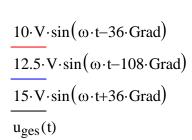
c)
$$u_{ges}(t) := |U_{ges}| \cdot \sin(\omega \cdot t + arg(U_{ges}))$$

mit den oben berechneten Werten

Der Realachse ist die Bezugs-

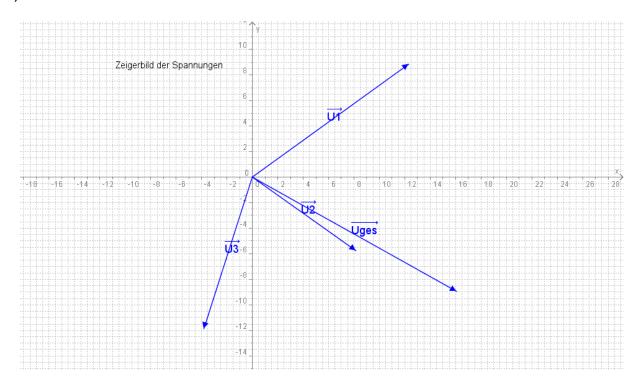
 $U_1 = 12.135 + 8.817j V$

 $U_3 = -3.863 - 11.888j V$


 $U_2 = 8.09 - 5.878j V$

linie.

 $ms = 10^{-3} \cdot s$


Liniendiagramm

0·V

d)

