Übungen 2

Es seien a, $b \in \mathbb{Z}$ und $m \in \mathbb{N}$. Wir definieren: $a \equiv b \pmod{m} \Leftrightarrow m \mid a - b$

2.1 Beweisen Sie:

Wenn sich bei der Division von a und b durch m jeweils derselbe Rest r mit $0 \le r < m$ ergibt, dann folgt: $a \equiv b \pmod{m}$.

4 Punkte

- **2.2** Es seien a, b, $c \in \mathbb{Z}$ und $m \in \mathbb{N}$.
 - 2.2.1 Beweisen Sie:

Wenn $a \equiv b \pmod{m}$, dann gilt: $a \cdot c \equiv b \cdot c \pmod{m}$.

3 Punkte

2.2.2 Beurteilen Sie die allgemeine Gültigkeit der folgenden "Kürzungsregel":

Aus $a \cdot c \equiv b \cdot c \pmod{m}$ folgt: $a \equiv b \pmod{m}$.

4 Punkte