
		stungsmessu	-			7	Versuch Nr. 6
			_ Fach: ST				
Geräte/Bauc	2	Vielfachme	nungsnetzge essgeräte 470 Ω /0, 33			nde 100 Ω/2\ ühlampe 6V	,
belastet wer <u>Aufgabe:</u> a) Schließe	urwiderstand den. den Widers	d 470Ω, Grö		leichspannı	ıngsnetzger		t maximal 0,33
		lende Spann		=		=	
Überprüfe	die Temper	atur des Wic	lerstandes! (1	mit der Fing	gerspitze)		
•	-		che Energie	·	,		umgesetzt.
·			*	,	_		the die Spannu Errechne die Le
Die eingeste	ellte Spannu	ıng betrug: U	J=	Als Lei	istung ergib	t sich: P = _	
			(große Bau	*	ie ermittelte	e Spannung.	Was ist
	-	•	iden Messun nit der maxin	_	_		n (Größe) des
In dem folge	enden I=f(U	J)-Diagramn Ss stehen jew	reils zwei ver	stände mit	unterschied Bauformen		rstandswerten rstände zur Ve
Aufgabe: Zeichne in d Hierzu muß	das Kennlin zunächst d	ienfeld die b ie folgende V	eiden "Leist	ungshyperb ausgerechn	oeln" für P _{ma} net werden.	_{x1} =1,25W un (Zu den ange	d P _{max2} =5W ein egebenen Spar
$P_{\text{max}1} = 1,25$	W						
U in V	2,5	5	10	20	30	40	50
I in A							

= 5W

U in V	10	15	20	25	30	40	50
I in A							

Die Leistungshyperbel P_{max} =5W schneidet die Widerstandsgerade R=80 Ω in dem Punkt mit I=0,25A und U= 20V .

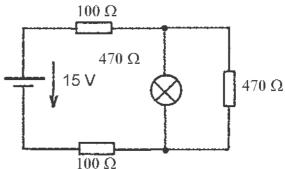
Was besagt dieser Schnittpunkt für diesen speziellen Fall

bezüglich des dargestellten Widerstandes (80Ω) und der in dem Widerstand **umgesetzten Leistung**?

Verallgemeinere Deine Darstellung, indem Du die Fläche des Diagramms einteilst in :

- -> Fläche unterhalb der Leistungshyperbel
- -> Fläche oberhalb der Leistungshyperbel

Prüfe, ob folgende Belastungsfälle für einen Widerstand mit **P**_{max}=**1,25W zulässig** oder **unzulässig** sind! Das betreffende Feld ist durch ein Kreuz zu kennzeichnen!


R in Ω	20	20	60	250	100	500	40		
U in V	7,5	5	7,5		20			10	2
I in A				0,1		0,125	0,17	0,2	0,2
zulässig									
unzulässig									

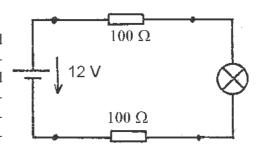
3. Indirekte Leistungsmessung in einer Schaltung Aufgabe:

Die Leistung in der Glühlampe soll durch eine **indirekte Leistungsmessung** ermittelt werden. Es stehen **zwei Vielfachmessinstrumente** zur Verfügung.

Meßschaltung:

Meßwerte:

Rechnung:


Ergebnis: P_{Lampe}=

Wie groß ist die Leistung in dem 470Ω -Widerstand? Bestimme diese **ohne eine zusätzliche Messung.**

Ergebnis: $P_{470\Omega}$ =

4. Ermittlung des Wirkungsgrades

Die nebenstehende Schaltung zeigt das Ersatzschaltbild eines Verbrauchers (Lampe) mit der zugehörigen Spannungsversorgung (Spannungsquelle). Die Hin- und Rückleitung haben einen Leiterwiderstand, die ersatzweise durch die beiden 100Ω -Widerstände (=Leiterwiderstand) dargestellt werden. Ermittle durch Messung der notwendigen Ströme und Spannungen auf indi-

rektem Wege den Wirkungsgrad der Schaltung. Die Spannungsquelle liefert die zugeführte Leistung. Die Leistung der Glühlampe entspricht der abgegebenen Leistung.

Meßschaltung für P_{zu}:

Meßschaltung für Pab:

Meßwerte:

Meßwerte:

Ergebnis:

Ergebnis:

 $P_{zu} =$

 $P_{ab}=$

 $P_{Verl} =$

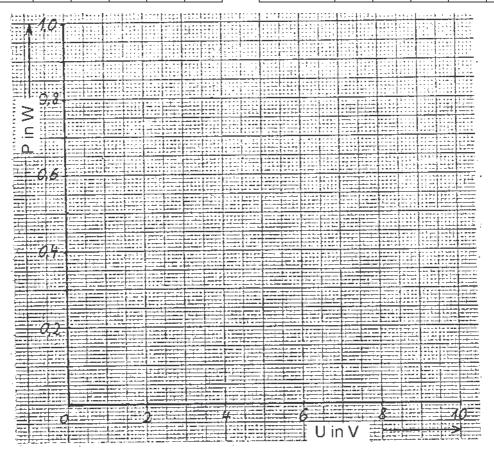
 $\eta =$

Versuch 6: indirekte Leistungsmess	ung
------------------------------------	-----

-4-

5. Das P=f(U)-Diagramm

Es soll der Zusammenhang der Leistung in Abhängigkeit von der Spannung bei konstantem Widerstand (R_1 =100 Ω , R_2 =220 Ω) graphisch dargestellt werden. (Messe!!!) Meßschaltung:


Meßergebnisse:

$R_1=100\Omega$

U in V	0	2	4	6	8	10
I in mA						
P in mW						

$R_2=220\Omega$

U in V	0	2	4	6	8	10
I in mA						
P in mW						

Bei Verdopplung der Spannung an einem Widerstandeinem Widerstand. Der Zusammenhang zwischen Leistung und Spannung be stand ist	
Wie lautet die Gleichung der oben dargestellten Kurve? P =	
Der Zusammenhang zwischen P und U ist	Die Kurve nennt

Zusatzfrage:

Welcher Zusammenhang besteht zwischen Leistung und Strom? P =					